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The S-state model: a work horse for HRTEM
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Abstract

The S-state model describes the dynamical scattering of electrons in a specimen foil, consisting of atom columns

parallel to the beam direction, such as a crystal or a particular crystal defect. In this model the electrons are considered

to be trapped in the electrostatic potential of an atom column, in which it scatters dynamically. This picture allows

physical insight, and it explains why a one-to-one correspondence is maintained between the exit wave and the projected

structure, even in case of strong dynamical scattering. Furthermore the model can be parameterised in a simple closed

analytical form. Apart from the computational advantages, the S-state model proves to be very useful to deduce the

projected structure directly from the exit wave, so as to ‘‘invert’’ the dynamical scattering. In this paper the validity of

the S-state model, is evaluated in much depth by a proper quantum mechanical treatment. The analytical

parameterisation of the 1S eigenfunction and eigenenergy is discussed. It is shown that the method, even in case of small

tilts, is valid for most thicknesses, currently used in HRTEM studies. Even for closely spaced atom columns, such as the

dumbbells in Si ½1 1 0�; Sn ½1 1 0� and GaN ½1 1 0�; the positions of the atom columns can be deduced with an accuracy of

a few pm.
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1. Introduction

Due to the imaging in an electron microscope
and multiple scattering of electrons in the speci-
men foil, a high-resolution transmission electron
microscope (HRTEM) image is hard to interpret
in terms of its structure, not to mention determi-

nation of atom column positions, with high
precision. To determine the structure from an
electron micrograph the imaging and scattering
must, in a sense be inverted.

In the past, methods were proposed to eliminate
the blurring effect of the microscope, by recon-
struction of the exit wave [1–5] or by correction for
spherical aberration ðCsÞ [6]. These reconstructed
electron waves [7–9] and Cs-corrected images
[10,11], are much sharper than conventional
HRTEM images. Nevertheless they are not yet
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interpretable in terms of positions and mass of the
atom columns. Therefore the dynamical scattering
must be inverted, so as to obtain a starting
structure which can be used as a ‘‘seed’’ for further
quantitative structure refinement.

Plane wave based methods, like the multislice
and Bloch wave formalism, are not useful for this
purpose, since they do not explain on an intuitive
basis why, even in case of highly dynamical
scattering, the HRTEM exit wave is still locally
related to the projected structure. The classical
picture of electrons crossing the crystal as plane
like waves in the directions of the Bragg-beams,
which stems from X-ray diffraction, is in fact
misleading. The physical reason for this local
dynamical diffraction is the channelling of the
electrons along the atom columns parallel to the
beam direction. Due to the positive electrostatic
potential of the atoms, an atom column acts as a
guide or channel for an electron. In an atom
column the electron can scatter dynamically with-
out leaving it. The channelling theory [12–18]
describes this effect and thus provides such
physical insight. The fundamental principle is
actually very closely related to a set of converging
lenses in a row, illuminated by a plane wave like
light wave. The light will be focused to a point at a
certain distance, depending on the strength of the
lenses and the repeat distance, and will be a plane
wave again at twice this distance. This effect will
be repeated periodically. The principle of the
channelling theory is based on the expansion of
the electron wavefunction in eigenfunctions of the
averaged atom column potential along the col-
umn. It turns out that this basis is so effective that
the scattering of the electron can be described
fairly well using only one bound eigenfunction, the
1S eigenfunction. The electron wavefunction can
be represented as a simple and even analytic
expression, if the 1S eigenfunction is parame-
terised, which allows fast calculation. At the other
hand, it explains why the motion of the electron
along the atom column is nearly periodical.

Because of its simplicity, the method has the
potential to become a real work horse for
HRTEM. It permits interpretation of the recon-
structed electron wavefunction directly in terms of
the projected structure, yielding an approximate

structure model that can then further be used as a
starter for quantitative refinement. Furthermore it
is valid even for crystal defects (dislocations,
translation interfaces, etc.) as long as the atoms
are aligned in columns in a direction close to the
beam direction.

The concept of channelling is not new. Lindhard
did the first experiments based on classical particle
scattering by studying the blocking effect on
natural alpha particle emission from 222Rn atoms
implanted in W [19]. The quantum mechanical
treatment of the channelling of energetic electron
beams was developed by Tamura et al. [20] and
Fujimoto [21]. The theory of diffraction channelling
was given in a form applicable to experiments with
fast electrons and positrons by Howie [12]. The
analogy with atomic wavefunctions has been devel-
oped extensively by Buxton, Steeds and co-workers
for the interpretation of CBED patterns [22].

This paper is organised as follows. In Section 2
the basic assumptions are posed together with a
summary of the main results of the channelling
theory. The thickness range for which the S-state
model, for isolated atom columns, is valid is
estimated. An expression for the electron wave-
function is proposed in closed analytic form in
Section 3. The physical evidence of the model and
a theoretical indication for the parameterisation of
the 1S eigenenergy, are discussed as well. In order
to study the effect of neighbouring atom columns
on the S-state model, the explicit case of atom
columns in diamond type of structures, like Si and
Sn, and GaN, all in ½1 1 0� orientation, are
considered, in Section 4. The results can be
generalised in a straightforward manner to a
columnar structure in zone-axis orientation. It will
be shown that to a good approximation the
wavefunction of a columnar structure can be
described by the superposition of the wavefunc-
tions of the respectively constituting atom col-
umns, for the thickness range commonly used in
HRTEM and that atom column positions can be
determined with an accuracy up to a few pm. In
the last section, tilt is included in the model.

For the presented calculations a Doyle and
Turner [23] parameterisation was used for the
electron scattering factors to calculate the two-
dimensional mean atom column potentials. The
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kinetic energy of the incident electrons was
assumed to be 300 keV and the Debye–Waller
factor 0.006 nm2:

2. Electron channelling theory for an isolated atom

column

The central assumption, on which the approx-
imations of the channelling theory are based, is
that the energy of the incident electrons is several
orders of magnitude larger than the potential
energy of the foil. In this case it is convenient to
consider the exit wave as a modulated plane wave,
with CðR; zÞ the modulation function. R is a two-
dimensional vector parallel to the foil surface and
z is a one-dimensional vector perpendicular to R

with opposite sign as the beam direction. The first
approximation is the ‘‘forward scattering approx-
imation’’ or ‘‘paraxial approximation’’, which
assumes that the second order derivative of the
modulation function is small and can be neglected,
since the motion of the high-energy electrons is
predominant in the forward z-direction. The
second approximation states that, the potential
energy, felt by an electron in the foil, can be
assumed to be proportional to the averaged two-
dimensional potential UðRÞ along the z-direction,
which is equivalent to the neglect of the higher
order Laue zones. In this sense, the electron
channelling is a high-energy approximation, sui-
table for situations in which the incident beam
direction is parallel or close to parallel to a main
zone-axis. The latter will be discussed in more
detail later on in this paper. Now a plane wave
illumination along a main zone-axis is assumed.
The main result of the channelling theory, for
details we refer to Refs. [13–17], is that the
wavefunction of an atom column is given by

CðR; zÞ ¼ 1 þ
X
nm

2cnm sin p
�Enm

E0

kz

2
z

� �
cnmðRÞ

� exp �ip
Enm

E0

kz

2
z �

1

2

� �� �
; ð1Þ

where cnm are the excitation coefficients, cnmðRÞ
the eigenfunctions of the Hamiltonian with eigen-
energies Enm; E0 the kinetic energy of the incident

electron, kz ¼ 1=l the z-component of the wave-
vector of the incident plane wave, with l the
relativistic electron wavelength and z the specimen
foil thickness. cnmðRÞ and Enm are solutions of the
eigenvalue problem

HcnmðRÞ ¼ EnmcnmðRÞ with

H ¼ �
_2

2m
DR � eUðRÞ; ð2Þ

with DR the two-dimensional Laplacian operator
acting in the plane, parallel to the specimen surface
and perpendicular to z; and m the relativistic
electron mass.

n and m are respectively the main- and angular-
quantum number. The quantum numbers classify
the eigenfunctions in a similar way as the
eigenfunctions of the two-dimensional quantum
harmonic oscillator. The same restrictions to m; as
for the two-dimensional harmonic oscillator, are
valid, i.e. m ¼ �n;�n þ 2;y; n � 2; n with
n ¼ 0; 1; 2;y an integer number. The wavefunc-
tion is now described in terms of the eigenfunc-
tions cnmðRÞ and eigenenergies Enm of the two-
dimensional Hamiltonian. Methods to calculate
the bound eigenfunction of an isolated atom
column will be discussed in Appendix A.

It was shown in Ref. [15] that the excitation
coefficients cnma0 ¼

R
cn

nma0ðRÞdR are zero, since
the integral over the space of Eq. (A.2) is zero. The
wavefunction of an isolated atom column, is thus
rotationally symmetric CðR; zÞ ¼ Cðr; zÞ; with
jRj ¼ r: For most atom columns, only one
eigenfunction is bound, c00ðrÞ: In previous papers
about channelling, this eigenfunction was called
the 1S eigenfunction, in similarity with the
hydrogen atom. Note that this spectroscopic
notation stems from the labeling of the eigenfunc-
tions of a three-dimensional one-electron atom.
Here the problem is two-dimensional. Neverthe-
less this nomenclature will be used throughout this
paper to avoid confusion with previous papers.
The subscript of the 1S eigenfunction will be kept
‘‘00’’.

For heavier atom columns (e.g. Sr ½1 0 0� and Au
½1 0 0�) also c20ðrÞ is bound, albeit only weak
compared to c00ðrÞ: Since jE20j is much smaller
than jE00j the relative importance of c20ðrÞ is much
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smaller and is building up much slower as function
of thickness compared to c00ðrÞ: This is clear from
Fig. 1 where

c00 sin p
�E00

E0

kz

2
z

� �����
����

and

c20 sin p
�E20

E0

kz

2
z

� �����
����

are plotted for various atom column types as
function of thickness. From this graph it can be
concluded that restricting the expansion to c00ðrÞ
is a valid approximation, for an isolated atom
column, up to a thickness of about 80% of
D00 ¼ �ð2=kzÞðE0=E00Þ; the periodical thickness.
This can be taken as a rule of thumb for the
validity of the S-state model for an isolated atom
column. The thickness of the specimen foil used in
high-resolution electron microscopy is mostly in
that range. The wavefunction can thus to good
approximation be written as

Cðr; zÞC1 þ 2c00 sin p
�E00

E0

kz

2
z

� �
c00ðrÞ

� exp �ip
E00

E0

kz

2
z �

1

2

� �� �
: ð3Þ

This expression is known as the S-state model.
Note that the S-state model is valid for incident

electrons with a kinetic energy in the intermediate
range, i.e. 100–300 keV; and is not valid for high
kinetic energies (e.g. 1 MeV), for which more
rotationally symmetric eigenfunctions are bound.

In the forgoing, no absorption was taken into
account, although the high-energetic incident
electrons have enough energy to excite atoms
and phonons in the specimen foil. The electron is
then scattered inelastically. The total amount of
elastically scattered electrons is therefore reduced.
This effect of absorption can be modelled by
introducing an imaginary two-dimensional mean
atom column potential [24], which is proportional
to the original one, UaðRÞ ¼ ð1 þ igÞUðRÞ [25].
This will affect the eigenenergy, which is now
complex, as well as the periodical thickness D00

and will introduce an exponential damping.

3. Parameterisation of the 1S eigenfunction and

eigenenergy of an isolated atom column

Empirically it was shown [15,26,27] that E00 can
be approximately parameterised in function of the
atomic number Z; the repeat distance in the atom
column d and the Debye–Waller factor B as [27]

1

jE00j
¼ a

d2

Z
þ bB

� �
: ð4Þ

In this section, we like to give a theoretical
indication for this expression.

From calculations and prior work [16,26,28] it
can be concluded that, the 1S eigenfunctions have
a shape which is in between an exponential
function and a Gaussian.

First, we assume that B ¼ 0: In this case, all
atoms are perfectly aligned in the atom column.
The atom column potential is then sharply peaked
at the atom column core, as is the 1S eigenfunc-
tion. Therefore it can be assumed that the 1S
eigenfunction is well described by a two-dimen-
sional normalised exponential function of the form

c00ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEB¼0

00 j
2p

s
1

b
exp �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEB¼0

00 j
q

r

b

0
@

1
A

0
@

1
A: ð5Þ

By substitution of Eq. (5) in Eq. (2) it can be
shown mathematically, that the atom column
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Fig. 1. jcn0 sinðpð�En0=E0Þðkz=2ÞzÞj is plotted as a function of

specimen foil thickness, for all n; for which En0o0: The repeat

distance d in the atom column is respectively for Si, Cu, Sr, Sn

and Au: 0.5431, 0.3615, 0.608, 0.6489 and 0:40786 nm: Note

that the jcn0 sinðpð�En0=E0Þðkz=2ÞzÞj oscillates faster for heavier

atom columns.
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potential is inversely proportional to r and since it
is averaged along the beam direction it is inversely
proportional to d

Uðr;B ¼ 0Þ ¼
C

d

1

r
; ð6Þ

with C a proportionality factor. Such coulombic
string potentials were used in the past to describe
rosette-motion channelling [29,30]. The eigen-
energy can then be calculated as

EB¼0
00 ¼

R
N

0 cn

00ðrÞHc00ðrÞrdrR
N

0 jc00ðrÞj
2rdr

ð7aÞ

After substitution of Eq. (5) in Eq. (7a), Eq. (7a) is
equal to

EB¼0
00 ¼

C

d
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0 exp �
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¼
C

d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEB¼0

00 j
q

b
; ð7bÞ

or

1

jEB¼0
00 j

¼
b2

C2
d2; ð8Þ

with H the Hamiltonian. From comparison of
Eqs. (8) and (4) it can be concluded that

b2

C2
C

a
Z
; ð9Þ

with a independent of Z; d and B; i.e. independent
of the type of atom column.

Secondly, we assume that Ba0: In this case the
atoms are no longer perfectly aligned in the atom
column due to thermal motion. As a result,
Uðr;Ba0Þ is broadened and flattened. If the atom
column potential is broadened the 1S eigenfunc-
tion will be broader as well. Let us therefore
assume that the 1S eigenfunction is well described
as a Gaussian. It can be proven mathematically, by
substitution into Eq. (2), that the atom column
potential is then quadratic, which is equal to a
Gaussian up to second order in r

Uðr;Ba0ÞpabjEBa0
00 j expð�4p2abjEBa0

00 jr2Þ: ð10Þ

The broadening of Uðr;Ba0Þ due to thermal
motion can be described by a convolution of
Uðr;B ¼ 0Þ and a Gaussian damping function
proportional to ð1=BÞ expð�4p2r2=BÞ: Assume
now for simplicity that also Uðr;B ¼ 0Þ is
Gaussian, in analogy with the usual parameterisa-
tion of the electron scattering factors [23],

Uðr;B ¼ 0ÞpabjEB¼0
00 j expð�4p2abjEB¼0

00 jr2Þ: ð11Þ

For Ba0; Uðr;Ba0Þ is then

Uðr;Ba0Þp
1

1=abjEB¼0
00 j þ B

� exp �4p2 r2

1=abjEB¼0
00 j þ B

� �
: ð12Þ

From Eqs. (12) and (10), it follows that

1

jEBa0
00 j

¼ a
d2

Z
þ bB

� �
: ð13Þ

A similar expression is obtained as in Eq. (4).1

Eq. (13) is not an exact expression for E00; but an
approximate one and can be used as a rule of
thumb.

Note that the inverse of Eq. (13) ðB ¼ 0Þ looks
very similar to aa; defined in Ref. [31], as a
parameter which describes the strength of interac-
tion of electrons and the specimen foil. If aa is
larger than unity, many wave diffraction effects
become important. In this case the classical model
becomes applicable.

If the Debye–Waller factor is large, a quadratic
normalised two-dimensional Gaussian will be
preferable and sufficient to a good approximation

c00ðrÞ ¼

ffiffiffiffiffiffiffiffiffi
jE00j
p

r
1

b
exp �

1

2

ffiffiffiffiffiffiffiffiffi
jE00j

p
r

b

 !2
0
@

1
A: ð14Þ

If the Debye–Waller factor is small, a quadratic
normalised two-dimensional exponential function
is preferable and sufficient to a good approximation

c00ðrÞ ¼

ffiffiffiffiffiffiffiffiffi
jE00j
2p

r
1

b
exp �

1

2

ffiffiffiffiffiffiffiffiffi
jE00j

p
r

b

 ! !
: ð15Þ

1 In Ref. [15] a different exponent of d is proposed, but this is

within the error of the approximation.
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By substitution of Eq. (14) or Eq. (15) in Eq. (3)
the wavefunction is expressed in a closed analytical
form, which allows fast computation and taking
analytical derivatives. Note that a Gaussian has
the main advantage that also its Fourier transform
has a simple analytic expression. The analytic
S-state model is in this case also applicable in
Fourier space.

In Appendix B a fast calculation method, to
estimate the approximate 1S eigenfunction and
eigenenergy, is presented assuming that the 1S
eigenfunction has a Gaussian- or exponential shape.

4. Electron channelling theory for non-isolated

atom columns

4.1. Introduction

Up to now the wavefunction of an isolated atom
column was considered. In this section we will
show that the wavefunction of an assembly of
parallel atom columns, can to a good approxima-
tion be described by the superposition of the
wavefunctions of the respectively constituting
atom columns, at least if the atom columns are
not too closely spaced. For simplicity, we will
consider a two-atom column system. The results
can be generalised for general assemblies of atom
columns. In this case the Hamiltonian is equal to

H ¼ �
_2

2m
DR � eUaðR� RaÞ � eUbðR� RbÞ; ð16Þ

with Ra the position of the first atom column and
Rb the position of the second one. Similarly as for
an isolated atom column the wavefunction can be
expanded in eigenfunctions of the Hamiltonian,

CðR; zÞ ¼ 1 þ
X

p

2cp sin p
�Ep

E0

kz

2
z

� �
cpðRÞ

� exp �ip
Ep

E0

kz

2
z �

1

2

� �� �
; ð17Þ

cpðRÞ are solutions of the second-order, linear,
partial differential equation HcpðRÞ ¼ EpcpðRÞ;
where p labels the eigenfunctions. Exact solutions
of this equation are, in contrast with the isolated
atom column case, not easily accessible. Approx-

imate solutions can be obtained by expansion of
the unknown eigenfunctions in a complete set of
basis functions. A complete set usually contains an
infinite number of elements. In this case, little is
accomplished, unless it is a basis set with the
desirable property that only a small number of
functions contribute significantly to the sum. Two
familiar sets for a two-atom column system are
fca

nmðRÞg; the set of isolated atom column
eigenfunctions localised at atom column a and
fcb

nmðRÞg; the set of isolated atom column
eigenfunctions localised at atom column b. Each
set is complete and consists of orthonormal
functions. Although, in principle one can expand
cpðRÞ only in terms of fca

nmðRÞg; one needs a very
large number of eigenfunctions to describe the
behaviour at atom column b: The solution is, to
use the collection of all eigenfunctions on a and b

as a basis set. In most cases, only a few
eigenfunctions are needed. However this set has
one disadvantage, that the eigenfunctions of
different atom columns are not orthonormal to
each other. Symmetry arguments, together with
qualitative insight, can be used to decide which
basis functions to keep. Note that the expansion of
cpðRÞ in functions of fca

nmðRÞg and fcb
nmðRÞg

allows one to learn about the relation between
eigenfunctions of a columnar structure and eigen-
functions of an isolated atom column.

4.2. Symmetry arguments

Columnar structures and crystals are charac-
terised by certain symmetry operations which
permit classification of the cpðRÞ eigenfunctions.
Some symmetry operations leave the Hamiltonian
of the system unchanged. In two dimensions the
possible symmetry operations are limited to the 10
two-dimensional crystallographic point groups.
Nevertheless, for a two-atom column system the
possible symmetry operations are limited. The
point group is 2mhmv for an identical two-atom
column system and mh for a non-identical two-
atom column system, with 2 a rotation over p
radians, mh a horizontal mirror axis and mv a
vertical mirror axis. In both cases, the Hamilto-
nian commutes with mh: The eigenfunctions are
classified according to their behaviour when acted
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on by this operation

mhcsðRÞ ¼ csðRÞ ðs eigenfunctionÞ;

mhcpðRÞ ¼ �cpðRÞ ðp eigenfunctionÞ: ð18Þ

The eigenfunctions have a second label according
to their rank in energy ð1; 2; 3;yÞ: In the identical
atom column case the Hamiltonian is also
invariant under inversion I ¼ mhmv ¼ 2; which
demands a third classification

IcgðRÞ ¼ cgðRÞ ðgerade eigenfunctionÞ;

IcuðRÞ ¼ �cuðRÞ ðungerade eigenfunctionÞ:

ð19Þ

Summarising, there are four possible symmetries
for eigenfunctions of the identical two-atom

column system sg; su; pg; pu and two possible
symmetries for eigenfunctions of the non-identical
two-atom column system s; p: These symmetries are
illustrated in Fig. 2, where the signs in each quadrant
denote the relative sign of the eigenfunction.

It can easily be understood that, in the expan-
sion of an eigenfunction of the two-atom column
system, only these isolated atom column eigen-
functions appear that have the same symmetry.
Note that in case of plane wave illumination along
a main zone-axis, the ‘‘p eigenfunctions’’ and
‘‘ungerade eigenfunctions’’ are not excited, which
can be concluded from symmetry arguments.

Each eigenfunction cpðRÞ has a certain symme-
try classified above and an associated eigenenergy
Ep; that is function of the inter atom column
distance D: Hence it would be useful to represent,
on a diagram the eigenenergy of each eigenfunc-
tion as function of D together with its symmetry.
Such a schematic sketch is called a correlation
diagram. Fig. 3a shows the correlation diagram for
two identical atom columns. The extremes, of the
graph, show the eigenfunctions for infinitely
spaced atom columns (right) and for fully coin-
cident atom columns (left). The eigenfunctions
with the same symmetry are connected; the lowest
ðD ¼ 0Þ to the lowest ðD ¼ NÞ; the next lowest
ðD ¼ 0Þ to the next lowest ðD ¼ NÞ; and so on.
Fig. 3b shows the correlation diagram for the non-
identical atom column case. Similarly to the
identical atom column case the eigenfunctions
are classified according to their symmetry and are

mh

mv
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Fig. 2. Possible symmetries of the eigenfunctions of an identical

(a) and a non-identical (b) two-atom column system. The

relative sign of the eigenfunction (þ or �) is shown in each case.
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Fig. 3. (a) Correlation diagram of a two-dimensional identical two-atom column system, showing the lowest 11 eigenfunctions. (b)

Correlation diagram of a two-dimensional non-identical two-atom column system, showing the lowest nine eigenfunctions. The dotted

line marks the realistic inter atom column distance D region for columnar structures in a main zone-axis orientation.
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connected. The eigenfunctions of the atom col-
umns in the non-identical atom column case are
non-degenerated, here is assumed that the energy
levels of atom column a are higher than the energy
levels of atom column b: This scheme is discussed
in more detail for three-dimensional molecules in
Ref. [32], which is very similar.

Sketches of the eigenfunctions of an identical
and non-identical two-atom column system can be
generated using the correlation diagrams in Fig. 3a
and Fig. 3b, respectively. For example, in case of
an identical two-atom column system, the 1sg

eigenfunction emerges from two isolated 1S
eigenfunctions with the same eigenenergy and
must change continuously in a 1S isolated atom
column eigenfunction, as D decreases from N: In
the meanwhile the s symmetry must be preserved
for all D: A sketch of the 1sg eigenfunction, in the
extreme limits and for an intermediate D; is shown
in Fig. 4 as well as some other eigenfunctions.
Fig. 5 shows some sketches of eigenfunctions in
case of a non-identical two-atom column system.

At the other hand, the correlation diagrams can
be used to decide which isolated atom column
eigenfunctions contribute most to a particular
two-atom column system eigenfunction cpðRÞ: In
the range between D ¼ 0 and N also other

isolated atom column eigenfunctions besides c00

can contribute to 1sg as long as the symmetry
requirements are fulfilled. In the next sections the
relevance of the various two-atom column system
eigenfunctions and the various isolated atom
column eigenfunctions in the expansion are
studied. Note that in HRTEM in a main zone-
axis orientation the inter atom column distances
are close to the D ¼ N case, which implies that the
atom columns to a very good approximation can
be considered as isolated and the mutual overlap
can be considered as a perturbation. This will be
discussed later on. Note that we exclude here atom
columns which have a zig-zag arrangement, which
in a first approximation can be regarded as a single
atom column with a large Debye–Waller factor.

4.3. Identical two-atom column system

In the case of an identical two-atom column
system, fEa

nmg and fEb
nmg are equal, which means

that they are degenerated. As stated above, only
the sg eigenfunctions are excited, in case of plane
wave illumination along a main zone-axis, which
could be concluded from symmetry arguments. In
this paragraph only the ca

00ðRÞ and cb
00ðRÞ eigen-

functions will be taken into account in the expan-
sion of c1sg

ðRÞ: In principle, ca
11x

ðRÞ; cb
11x

ðRÞ;
ca

20ðRÞ and cb
20ðRÞ could be included in the ex-

pansion since they have the appropriate symmetry,
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although it is expected that these eigenfunctions
will contribute much less than ca

00ðRÞ and cb
00ðRÞ:

The degree to which ca
11x

ðRÞ; cb
11x

ðRÞ will con-
tribute, depends on the overlap of these eigenfunc-
tions and thus on the separation between the atom
columns. It is one of the aims of this paper to show
that expansion of c1sg

ðRÞ only in ca
00ðRÞ and

cb
00ðRÞ is rather sufficient and that to a good

approximation the expansion of CðR; zÞ can be
limited by only taking c1sg

ðRÞ into account.

c1sg
ðRÞ can be written as

c1sg
ðRÞCa

1sg

00 ca
00ðR� RaÞ þ b

1sg

00 cb
00ðR� RbÞ; ð20Þ

where a
1sg

00 is equal to b
1sg

00 since c1sg
ðRÞ is invariant

under inversion. Substitution of Eq. (20) in
Eq. (17) becomes

CðR; zÞC1 þ 2c1sg
c
1sg

00 sin p
�E1sg

E0

kz

2
z

� �
� ðca

00ðR� RaÞ þ cb
00ðR� RbÞÞ

� exp �ip
E1sg

E0

kz

2
z �

1

2

� �� �
; ð21Þ

where a
1sg

00 and b
1sg

00 are set to c
1sg

00 : The next bound

eigenfunction of the two-atom column system,
which is neglected in the equation above is c2sg

ðRÞ;
can mainly be described as a linear combination of

ca
11x

ðRÞ and cb
11x

ðRÞ: This could be concluded from

the correlation diagram in Fig. 3a. This eigenfunc-
tion will contribute much less than c1sg

ðRÞ and

was therefore neglected.

4.4. Non-identical two-atom column system

In the case of a non-identical two-atom column
system, it may be supposed that Ea

00 > Eb
00; since,

ca
00ðRÞ and cb

00ðRÞ are non-degenerate, in contrast
with the identical two-atom column system. Also
here, the expansion of c1sðRÞ and c2sðRÞ are
limited to ca

00ðRÞ and cb
00ðRÞ and the expansion of

CðR; zÞ is limited to the two most bound eigenfunc-
tions c1sðRÞ and c2sðRÞ; which can be written as

c1sðRÞCa1s
00c

a
00ðR� RaÞ þ b1s

00c
b
00ðR� RbÞ; ð22Þ

c2sðRÞCa2s
00c

a
00ðR� RaÞ þ b2s

00c
b
00ðR� RbÞ: ð23Þ

Substitution of Eqs. (22) and (23) into Eq. (17)
results in

CðR; zÞC1 � ðc1sa1s
00 þ c2sa2s

00Þc
a
00ðR� RaÞ

� ðc1sb1s
00 þ c2sb2s

00Þc
b
00ðR� RbÞ

þ c1sa1s
00 exp �ip

E1s � E2s

E0
kzz

� ��

þ c2sa2s
00

�
ca

00ðR� RaÞ exp �ip
E2s

E0
kzz

� �

þ c1sb1s
00 þ c2sb2s

00

�

� exp �ip
E2s � E1s

E0
kzz

� ��
cb

00ðR� RbÞ

� exp �ip
E1s

E0
kzz

� �
: ð24Þ

It can be shown that if the overlap between
ca

00ðR� RaÞ; cb
00ðR� RbÞ; UaðR� RaÞ and

UbðR� RbÞ is negligible, a1s
00 and b2s

00 tend to zero.
The wavefunction can then be written as

CðR; zÞC1 þ c2sa2s
00 sin p

�E2s

E0

kz

2
z

� �
ca

00ðR� RaÞ

� exp �ip
E2s

E0

kz

2
z �

1

2

� �� �

þ c1sb1s
00 sin p

�E1s

E0

kz

2
z

� �
cb

00ðR� RbÞ

� exp �ip
E1s

E0

kz

2
z �

1

2

� �� �
: ð25Þ

From this expression it is clear that the periodicity
of excitation, as function of foil thickness, for
different atom columns, can be different as is
observed in experiments and simulations [18].

Note that, if the expansion of the sg; su; 1s and
2s two-atom column system eigenfunctions is
limited to the isolated atom column 1S eigenfunc-
tions, localised at atom columns a and b;
parameterised as quadratic two-dimensional nor-
malised Gaussians or exponential function, the
coefficients a

1sg

00 ; b
1sg

00 ; a1su

00 ; b1su

00 ; a1s
00 ; b1s

00 ; a2s
00 and b2s

00

as well as the eigenenergies E1sg
; E1su

; E1s and E2s

can be calculated analytically as is reported in
Ref. [33] (Gaussian).
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4.5. The S-state model for an assembly of atom

columns

The reader will have noticed that Eqs. (3), (21)
and (25) are closely related to each other. These
expressions will be generalised as

CðR; zÞC1 þ 2
X

j

c
j
1sin p

�E
j
1

E0

kz

2
z

 !
cj

1ðR� RjÞ

� exp �ip
E

j
1

E0

kz

2
z �

1

2

 !( )
; ð26Þ

where j labels the atom columns in the crystal. If it
is assumed that the most bound local eigenfunc-
tion cj

1ðR� RjÞ can be approximated well as a
two-dimensional Gaussian or exponential func-
tion, both quadratic normalised, as shown in
Section 3,

cj
1ðR� RjÞ

¼

ffiffiffiffiffiffiffiffi
jEj

1j
p

s
1

bj

exp �
1

2

ffiffiffiffiffiffiffiffi
jEj

1j
q

ðR� RjÞ
bj

� �2
 !

; ð27Þ

or

cj
1ðR� RjÞ

¼

ffiffiffiffiffiffiffiffi
jEj

1j
2p

s
1

bj

exp �
1

2

ffiffiffiffiffiffiffiffi
jEj

1j
q

ðR� RjÞ
bj

� �� �
; ð28Þ

the wavefunction can be expressed in closed
analytical form. Henceforth it will be called the
analytical S-state model. The wavefunction is now
completely determined by the parameters c

j
1 ; E

j
1 ;

bj ; z and Rj : This allows a significant gain in
calculation speed compared to iterative methods as
Bloch wave- or multislice algorithms. At the other
hand, is such an analytic model for the wavefunc-
tion, very well suited to invert the dynamical
electron scattering. In order to do this, the
parameters must be estimated by means of a
parameter estimation technique. Since the model
for the wavefunction is analytical, also the
gradient of CðR; zÞ and the Hessian matrix can
be provided analytically, which allows fast con-
vergence to the global optimum. The experimental
data can be experimental reconstructed exit waves
or Cs-corrected images.

4.6. Accuracy of the S-state model for an assembly

of atom columns

The S-state model is only an approximate
description of a dynamical scattering process of
an electron in a specimen foil. In this section we
will study the limits of the model and the accuracy
of the atom positions that can be expected.

As mentioned before, it is the main goal of the
channelling theory to invert the dynamical electron
scattering, which is equivalent with determination
of the atom column positions and their chemical
composition. Here we will mainly focus on the
positions of the atom columns Rj : In order to
evaluate the accuracy to which the atom columns
positions can be determined, multislice simulations
of exit waves of known test structures are
performed and used as observations, to which an
analytic S-state model was optimised using a
criterion. Noise was not taken into account. The
estimated atom column positions Rj are then
compared to the initial atom column positions
used as input for the multislice calculations. From
this, the accuracy or systematic error of the
estimated atom column positions can be studied.
Note that this test does not provide information
about the statistical precision but only about the
accuracy of the model.
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Sn right dumbell
Si left dumbell
Si right dumbell
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Fig. 6. Systematic error on the estimated atom column position

of both the left and right atom column of a dumbbell, along

½0 0 1�; for both Si ½1 1 0� and Sn ½1 1 0�: The dotted line marks

2 pm.

P. Geuens, D. Van Dyck / Ultramicroscopy 93 (2002) 179–198188



As fitting criterion, ‘‘least squares’’ are used. As
test structures Si ½1 1 0�; Sn ½1 1 0� and GaN ½1 1 0�
are chosen, because of the small spacing between

the atom columns in the ½1 1 0� orientation,
respectively, 136, 162 and 113 pm: All parameters
mentioned in the previous section are fitted. From
Fig. 6 it is clear that the accuracy of the estimated
atom column positions is better than 10 pm for Si
½1 1 0� and 1.5 pm for Sn ½1 1 0� up to about
70–80% of D00; the periodical thickness, which is
about 30 nm for Si ½1 1 0� and 10 nm for Sn ½1 1 0�:
Note that the accuracy on the atom column
positions is better than 2 pm for both Si ½1 1 0�
and Sn ½1 1 0� up to a thickness of 10 nm: Fig. 7
shows that the accuracy of the estimated atom
column positions in the x- and y-direction is better
5 pm for both the Ga and N atom columns of
GaN ½1 1 0�; up to a thickness of 9 nm about 80%
of the periodical thickness D00C11 nm of the Ga
atom columns. For small thicknesses the positions
of the Ga atom columns can be estimated more
accurately than the positions of the N atom
columns, whereas thicknesses near the periodical
thickness D00 of the Ga atom columns, the N atom

0.0 2.5 5.0 7.5 10.0
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-5.0
-2.5
0.0
2.5
5.0

thickness (nm)

∆y
(p

m
) 
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N
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(p

m
) 
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N

Fig. 7. Systematic error on the estimated atom column position

of both Ga and N along the x-direction (a) and the y-direction

(b). The dotted line marks 2 pm:

Fig. 8. Electron wave of Sn ½1 1 0� at a specimen foil thickness of 9 nm: (a) amplitude of the fitted analytical S-state model; (b) the

phase of the fitted analytical S-state model; (c) amplitude calculated with a multislice formalism; (d) the phase calculated with a

multislice formalism.
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column positions can be estimated more accurately
than the Ga atom column positions. Figs. 8 and 9
show the amplitude and phase of respectively the
fitted analytic S-state model and the wavefunction
calculated with a multislice algorithm, for Sn
½1 1 0� ðz ¼ 9 nmÞ and GaN ½1 1 0� ðz ¼ 8 nmÞ:
From this it can be concluded that the S-state
model provides a quite robust model to estimate
the atom column positions with high accuracy,
from an electron wavefunction of crystals even
with closely spaced atom columns.

5. Electron channelling theory in case of tilted

illumination

In practice it is almost impossible to align the
specimen locally in zone-axis orientation. This is
due, for example, to local bending of the specimen
or different grain orientations. Therefore, it is

important for practical applicability of the chan-
nelling theory, that the effect of crystal- and beam
tilt is included in the model and can be estimated.
Tilt was included in the channelling theory by
Van Dyck et al. [34] in a different and more
complicated way, nevertheless the conclusions are
similar.

Both crystal- and beam tilt can be regarded
as equivalent if the description is restricted to
the interaction between electron and specimen.
Since the treatment of beam tilt is more straight-
forward than the treatment of crystal tilt, beam
tilt will be considered here. In these cases kR;
the two-dimensional radial component, parallel
to the surface of the specimen foil, of the
wavevector k of the incident plane wave, is non-
zero. The three-dimensional time-indepen-
dent Schr .odinger equation of an electron in a
two-dimensional potential, in the ‘‘forward
scattering approximation’’, can be written as

Fig. 9. Electron wavefunction of GaN ½1 1 0� at a specimen foil thickness of 8 nm: (a) amplitude of the fitted analytic S-state model; (b)

the phase of the fitted analytic S-state model; (c) amplitude calculated with a multislice formalism; (d) the phase calculated with a

multislice formalism.
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follows:

�
2p_2kz

mi

@

@z
CðR; zÞe2pikR�R

¼ HCðR; zÞe2pikR�R �
4p2_2k2

R

2m
CðR; zÞe2pikR�R:

ð29Þ

Since H is not dependent on z; the wavefunction
CðR; zÞ can be written as a series of solutions,
similar as Eq. (1), factorised in R-dependent eigen-
functions cnmðRÞ and z-dependent phase factors

CðR; zÞe2pikR�R ¼
X
nm

cnmðkRÞcnmðRÞ

� exp �ip
Enm

E0
�

k2
R

k2
z

� �
kzz

� �
:

ð30Þ

Note that cnmðkRÞ is now dependent on kR: This
equation can be rewritten, using the boundary
condition

P
nm cnmðkRÞcnmðRÞ ¼ CðR; 0Þe2pikR�R ¼

e2pikR�R;

CðR; zÞ ¼ 1 þ
X
nm

2cnmðkRÞ

� sin �p
Enm

E0
�

k2
R

k2
z

� �
kz

2
z

� �
cnmðRÞ

� exp �ip
Enm

E0
�

k2
R

k2
z

� �
kz

2
z

��

þ 2kR � R�
1

2

��
: ð31Þ

After substitution of Eq. (30) or Eq. (31) in
Eq. (29) it is clear that the differential equation
can be transformed to the known eigenvalue
problem equation (2), in case of plane wave
illumination along a main zone-axis.

Eq. (31) is not an exact description of the
wavefunction up to high tilt angles. The break-
down will happen if the approximations made in
Eq. (29) are not justified anymore. For large beam
tilts, the backscattering cannot be neglected and
thus the ‘‘forward scattering approximation’’ is no
longer valid. However, for realistic tilt angles, as
occurring in HRTEM, the S-state model is valid as
will be shown in the next section.

The periodical thickness DkR
nm of the eigenfunc-

tions cnmðR; zÞ is not invariant under tilt kR and is

equal to

DkR
nm ¼

2

kz

1

ðk2
R=k2

z Þ � Enm=E0

¼D0
nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ tan2 a

p
1 þ

D0
nm

2l
tan2 a

� ��1

: ð32Þ

since jkRj=jkzj ¼ tan a and kz ¼ ð1=lÞð1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ tan2 a

p
Þ with a the tilt angle. If a is small,

DkR
nm can be written to a good approximation as

DkR
nmCD0

nm 1 þ
D0

nm

2l
a2

� ��1

: ð33Þ

The periodical thickness will thus decrease as
function of increasing tilt, as if the electron–object
interaction increases. This is seems surprising,
since it is expected that the strength of the
electron–object interaction decreases in case of
increasing tilt. However this is only part of the
story. In the next we will show that indeed the
electron–object interaction decreases as expected.

The eigenfunctions cnmðRÞ can be classified in
three groups. A first group is the 1S eigenfunction
c00ðRÞ; which has an absolute eigenenergy which is
much larger than zero. A second group comprises
the less bound eigenfunctions, which have a much
smaller absolute eigenenergy as the 1S eigenfunc-
tion. Some of these eigenfunction were not excited,
in case of plane wave illumination along a main
zone-axis, due to their symmetry. A third group
comprises the continuum eigenfunctions, which
have an eigenenergy which is approximately equal
to Et ¼ h2k2

R=2mCðk2
R=k2

z ÞE0; the transverse en-
ergy of the incident electrons. It can be shown that
only these continuum eigenfunctions are excited
since they are close to the plane wave e2pikR�R

outside the atom column.
If we now consider for example a Si ½1 0 0� atom

column, which has only one bound eigenfunction,
the 1S eigenfunction, there are only eigenfunctions
of group one and three involved. We can now to a
good approximation expand, the terms containing
eigenfunctions of the third group of Eq. (31) up to
first order in �pðEnmAC=E0 � k2

R=k2
z Þðkz=2Þz; since

EnmACCðk2
R=k2

z ÞE0: ‘‘C’’ is labeling the continuum
eigenfunctions.
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CðR; zÞC1 þ 2c00ðkRÞ

� sin �p
E00

E0
�

k2
R

k2
z

� �
kz

2
z

� �
c00ðRÞ

� exp �ip
E00

E0
�

k2
R

k2
z

� �
kz

2
z

��

þ 2kR � R�
1

2

��

þ
X

nmAC

2icnmðkRÞ �p
Enm

E0
�

k2
R

k2
z

� �
kz

2
z

� �

� cnmðRÞe
�2pikR�R: ð34Þ

It can be easily shown that the excitation
coefficient c00ðkRÞ ¼

R
cn

00ðRÞe
2pikR�R dR is decreas-

ing with increasing tilt. The second term of
Eq. (34) is thus gaining in importance compared
to the first term, containing the 1S eigenfunction.
The thickness dependence of the wavefunction
thus becomes much more linear as a function of
thickness. Physically this means that fewer elec-
trons are trapped in the atom column and that the
electron–object interaction is closer to a kinematic
model than it is in the non-tilted case. Tilt thus
breaks down the strong dynamical interaction as is
expected.

For a heavier atom column, like a Au ½1 0 0�
atom column, eigenfunctions of the second group
are contributing as well to Eq. (34). Although
Enm � ðk2

R=k2
z ÞE0 are small, an expansion up to

first order in �pðEnm=E0 � k2
R=k2

z Þðkz=2Þz would be
insufficient. This group of eigenfunctions will thus
introduce non-linear terms as a function of
thickness in Eq. (34), apart from the term with
the 1S eigenfunction. Nevertheless the excitation
coefficients cnmeCðkRÞ will decrease with increasing
beam tilt, as will be shown in the next section. This
confirms what we would expect, namely that for
heavier atom columns a larger beam tilt is needed
to reduce the dynamical interaction.

5.1. Excitation of the eigenfunctions

In case of plane wave illumination along a main
zone-axis the eigenfunctions, which were not
invariant under mh and I; were not excited e.g.
c11xðRÞ in case of an isolated atom column and
c1pg

ðRÞ in case of an identical two-atom column

system. Nevertheless in case of tilted illumination,
will the excitation coefficients of these eigenfunc-
tions be different from zero depending on the
direction of tilt. In order to evaluate the influence
of tilt on the excitation of the eigenfunctions, the
symmetry of the eigenfunctions multiplied by
e2pikR�R will be studied. We first consider the
behaviour of the real and imaginary part of
e2pikR�R when acted on by operations mh and I

mh cosð2pkR � RÞ ¼ ðcosð2pkxxÞ cosð2pkyyÞ

þ sinð2pkxxÞ sinð2pkyyÞÞ;

mh sinð2pkR � RÞ ¼ ðsinð2pkxxÞ cosð2pkyyÞ

� cosð2pkxxÞ sinð2pkyyÞÞ ð35Þ

and

I cosð2pkR � RÞ ¼ cosð2pkR � RÞ;

I sinð2pkR � RÞ ¼ �sinð2pkR � RÞ: ð36Þ

It can be concluded that neither the real nor the
imaginary part is invariant under mirror-axis mh;
at least not, if both kx and ky are different from
zero. The real part is invariant under inversion I;
whereas the imaginary part is not invariant.

Combining both the behaviour of the eigenfunc-
tions and e2pikR�R when acted on by operation I;
using IðgðRÞhðRÞÞ ¼ IðgðRÞÞIðhðRÞÞ; it can be
concluded that the excitation of the eigenfunctions
which are invariant under inversion I; will be real
and that the ones which are not invariant under
inversion I; will be imaginary. Since all excitation
coefficients are either real or imaginary, their
phases are 0 and p=2 or �p=2; respectively.

In case of an isolated atom column, the
excitation coefficient of cn0ðRÞ will be real and,
for example, the excitation coefficients of c11x

ðRÞ
and c11y

ðRÞ will be imaginary. In case of a two-
atom column system the excitation coefficients of
csg

ðRÞ and cpg
ðRÞ will be real and the excitation

coefficients of csu
ðRÞ and cpu

ðRÞ will be imagin-
ary. If kx ¼ 0; c11x

ðRÞ; csu
ðRÞ and cpg

ðRÞ are not
excited and if ky ¼ 0; c11y

ðRÞ and cpðRÞ are not
excited. This could be concluded from the beha-
viour of the eigenfunction multiplied by e2pikR�R when
acted on by operation mh; using mhðgðRÞ hðRÞÞ ¼
mhðgðRÞÞmhðhðRÞÞ:

In Fig. 10, jcpðkRÞ sinð�pðEp=E0 � k2
R=k2

z Þ ðkz=
2ÞzÞj for different two-atom column system
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eigenfunctions, of a dumbbell of Sn ½1 1 0�; are
plotted as a function of thickness and crystal tilt,
for the case that both kxa0 and kya0: It is clear
that for tilts larger than a few mrad, for a
dumbbell of Sn ½1 1 0�; the S-state model is no
longer valid, since the wavefunction is no longer
governed by the 1sg- or the 1S eigenfunction.

5.2. An additional effect of tilted illumination

Tilted illumination will introduce different kinds
of effects, which will alter the wavefunction. Most
of them were discussed in detail in the previous
paragraphs, like the decrease of the periodical
thickness and the excitation of eigenfunctions with
p or ‘‘ungerade’’ like symmetry due to the non-
symmetrical illumination.

One effect which was not discussed in the
previous sections is the extra factor e2pikR�R; which
will cause a shift of the maxima and minima of the
amplitude and phase of the wavefunction with
respect to non-tilted illumination. In a fitting
procedure this will lead to biased estimations of
the atom column positions. This can be avoided by
including two extra parameters ðkx; kyÞ; which can
be position dependent if the crystal foil is for
example locally bended.

6. Guidelines for experimentalists

In this section the authors would like to draw
some clear conclusions to guide experimentalists.
In our opinion, the channelling theory has a large
potential, not just as teaching and understanding

Fig. 10. jcpðkRÞ sinð�pðEp=E0 � k2
R=k2

z Þðkz=2ÞzÞj as a function of specimen foil thickness z and tilt kR; respectively, for 1sg (a), 1su (b),

2sg (c), 1pu (d), 1pg (e) and 2su (f). The excitations and eigenergies were calculated for a dumbbell of Sn ½1 1 0�:
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tool, but also as a model, which allows to invert
the dynamic scattering to a good approximation.
It is actually in this framework that we like to
discuss the limits of the channelling theory in this
section, more specific the effect on the estimated
atom column positions by neighbouring atom
columns and beam- or crystal tilt. Although it is
difficult to give some hard numbers we will try to
give an idea about the limits.

First of all we like to stress that the S-state
model is only an approximate description of a
dynamical scattering process. For example only
the 1S eigenfunction is kept, whereas the other
eigenfunctions are neglected. This approximation
is only valid up to a thickness of about 80% of the
periodical thickness D00 ¼ �ð2=kzÞðE0=E00Þ: D00 is
dependent on the kinetic energy of the incident
electrons E0 and the eigenenergy of the 1S
eigenfunction of the atom column E00: E00 can
be roughly estimated by Eq. (4) and the parameter
b provided by Van Dyck et al. [27]. D00 is for most
atom column types of the order of the upper limit
of the range of specimen thicknesses, normally
used for high-resolution electron microscopy.

Second, the S-state model assumes that the
wavefunction of the columnar structure is equal to
the superposition of the wavefunctions of the
constituting atom columns. This is in principle
only the case if the atom columns can be regarded
as isolated. Nevertheless, if the atom column
positions are symmetry positions of the structure,
the estimated atom column positions will not be
influenced by it, since the minima and maxima of
the wavefunction are not moved. Even if the atom
columns positions are no symmetry positions of
the structure, it was shown in Section 4 that the
effect of neighbouring atom columns, on systems
with 2mhmv or mh symmetry, on the estimated
atom column positions is smaller than 5 pm for
thicknesses up to 10 nm; for closely spaced atom
columns like the dumbbells in Si ½1 1 0�; Sn ½1 1 0�
and GaN ½1 1 0�; with respectively an atom column
spacing of 136, 162, 113 pm: For simplicity, we
have considered a two-atom column system,
however the results can be generalised for general
assemblies of atom columns.

Third, the S-state model assumes plane wave
illumination along a main zone-axis. In Section 5 it

is shown that the model can easily be extended for
the case of tilted illumination or equivalent crystal
tilt. It is shown that the amount of tilt is limited,
since for large tilts the weakly bound non-S
eigenfunctions will be excited as well. Nevertheless
this will only be significant for tilts larger than a
few mrad. The S-state model is thus still valid,
even in case of a small tilt of a few mrad.
Nevertheless it would be worthwhile to include
extra fitting parameters ðkx; kyÞ; since the extra
factor e2pikR�R in the wavefunction can introduce
some shift of the minima and maxima of the
amplitude and phase of the wavefunction.

As a general conclusion we can state that the S-
state model is valid up to thicknesses normally
used in high-resolution electron microscopy, and
that even for closely spaced atoms and slightly
tilted illumination. Because of its simplicity and
the possibility to express it in a closed analytical
form, the method has the potential to become a
real work horse for HRTEM. It allows to interpret
the reconstructed electron wavefunction directly in
terms of the projected structure, yielding an
approximate structure model that can then further
be used as a starter for quantitative refinement.
Furthermore it is valid even for crystal defects
(dislocations, translation interfaces, etc.) as long as
the atoms are aligned in columns close to the beam
direction.
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Appendix A. Calculation of the bound eigenfunc-

tions of an isolated atom column

In this section an isolated atom column will be
considered. The system poses rotational symmetry,
that is all directions in the plane are equivalent.
The potential of such a system will only depend on
the radial distance r from a suitably chosen origin,
this means UðRÞ ¼ UðrÞ with r ¼ jRj: Such a
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problem is known in physics as a central force
problem. In this case, the solution of Eq. (2) may
be factorised as

cnmðRÞ ¼ RnmðrÞFmðjÞ ðA:1Þ

with FmðjÞ the angular function and RnmðrÞ the
radial function, which are solutions of

@2

@j2
FmðjÞ ¼ �m2FmðjÞ ðA:2Þ

and

�
_2

2m
@2

@r2
þ

1

r
@

@r
�

m2

r2

� �
þ eUðrÞ

� �
RnmðrÞ

¼ EnmRnmðrÞ ðA:3Þ

respectively. In the following sections, the solu-
tions of these equations will be discussed.

A.1. Solutions of the angular equation

Eq. (A.2) is known from the elementary theory
of ordinary differential equations. Two elementary
independent solutions are eimj and e�imj: There-
fore, FmðjÞ can be written as

FmðjÞ ¼
1ffiffiffiffiffiffi
2p

p eimj: ðA:4Þ

If m is an integer ðm ¼ 0;71;72;yÞ this set of
functions is orthonormal. Standing wave repre-
sentations of FmðjÞ can be formed by defining
appropriate linear combinations. For example for
m ¼ 71

F1x
ðjÞ ¼

1ffiffiffi
p

p cos j;

F1y
ðjÞ ¼

1ffiffiffi
p

p sin j: ðA:5Þ

A.2. Solutions of the radial equation

The solution of the radial equation (A.3) is
much more difficult to solve than the angular
equation. In the past various attempts were made
to solve it numerically. These attempts can be
mainly categorised in two groups: finite difference
methods [15,35] and expansion of the eigenfunc-

tions in a set of basis functions [15]. Both methods
have their particular advantages and disadvan-
tages, which will be discussed below.

If one tries to solve Eq. (A.3) by finite difference
methods one is faced with divergence problems in
the origin of the term

1

r
@

@r
�

m2

r2
: ðA:6Þ

This divergence can be avoided for m ¼ 0: How-
ever this puts restrictions on the eigenfunctions
that can be calculated by this method. In Ref. [15],
two other numerical problems are reported. The
first problem is that the radial range has to be
restricted to ½0;L� in order to limit the number of
sampling points, and thus the order of the
eigenmatrix. This implies that only these bound
functions, which are sufficiently damped, can be
calculated correctly. The second problem is that
the equation is not defined for negative values so
that asymmetric difference formula has to be
used to approximate the derivatives in the
neighbourhood of the boundaries. Their use will
destroy the symmetry of the eigenmatrix and
so the hermicity and consequently the eigensolu-
tions of the matrix will not necessarily form a
complete basis. The last mentioned problem
is tackled if the Laplacian term is written in
cartesian coordinates. Note that it is then easy to
incorporate two-atom column potentials and
calculate the eigenfunctions of two neighbouring
atom columns.

Expansion of the eigenfunctions in an ortho-
normal and complete basis will avoid large
sampling in order to correctly describe the sharp
peak of the potential. When an optimal basis is
chosen, the number of basis functions needed is
limited. This reduces the dimension of the eigen-
value problem which has to be solved. In the past
Bessel functions were proposed as basis set, which
are orthonormalised on an interval ½0;L� [15]. The
advantage is that the elements of the eigenmatrix
can be calculated analytically if one is making use
of the Doyle and Turner parameterisation [23], to
describe the two-dimensional mean atom column
potential. A disadvantage is that an interval ½0;L�
has to be chosen on which the basis is orthonor-
mal. The larger the interval the larger the number
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of basis functions which has to be taken into
account to achieve convergence. Although the
number of basis functions needed to describe the
1S eigenfunction is limited, Bessel functions are
not an optimal basis set to expand in. A much
more effective basis set are two-dimensional
quantum harmonic oscillator eigenfunctions which
are orthonormal and complete over the whole
space. Only a limited number of basis functions is
needed, if the harmonic oscillator length is
optimised to the studied problem. To describe
the most bound eigenfunction, only one is to
good approximation sufficient, which will be
argued in the next section. The elements of
the eigenmatrix can not be calculated analytically
but a recursion relation can be set up if one is
making use of the Doyle and Turner parameter-
isation. A detailed description of this will be
beyond the goal of this paper and will be reported
elsewhere.

Appendix B. A fast method to calculate E00 and the

1S-eigenfunction

It could be concluded from Section 3 that the
most bound eigenfunction of an atom column can
be reasonably described as a two-dimensional
quadratic normalised Gaussian or exponential
function. This deduction was drawn based on
calculations of the most bound eigenfunction, by
finite difference and expansion in a set of basis
functions, of an atom column and from physical
intuition. Two parameters are unknown in this
parameterisation of the c00ðrÞ eigenfunction; b

and E00: In order to improve a guess for b and E00

the variational principle will be used [36]. This
method will provide the possibility to calculate E00

in an easy and quite accurate way compared to a
solution obtained by finite difference methods and
an expansion in a basis set as sketched in
Appendix A.

Assume that the Gaussian parameterisation of
the 1S eigenfunction of the atom column is written
as

c00ðr; b
0Þ ¼

1ffiffiffi
p

p
b0

exp �
1

2

r
b0

� �2
� �

; ðB:1Þ

with b0 ¼ b=
ffiffiffiffiffiffiffiffiffi
jE00j

p
variable. Then the variational

principles states that

E00pHðb0Þ ¼

R
c00ðr; b

0ÞHc00ðr; b
0Þr drR

c00ðr; b0Þc00ðr; b0Þr dr
: ðB:2Þ

In order to minimise Hðb0Þ the integrals in
Eq. (B.2) has to be solved. The Doyle and Turner
[23] parameterisation is used to describe the two-
dimensional mean atom column potential UðrÞ:

UðrÞ ¼
_2

2me

X
i

Ai

Bi

exp �
r2

Bi

� �
ðB:3Þ

with

Ai ¼
4m=m0

d
ai and Bi ¼

bi þ B

4p2
; ðB:4Þ

with ai and bi the Doyle and Turner parameters
and m0 the relativistic rest mass of an electron.
Note that this expression for the mean atom
column potential is an expression for the case that
all atoms in the atom column are equal. Of course
this expression can be extended to one for different
kind of atom types in one atom column.
The nominator of Eq. (B.2) is one since the
eigenfunctions are normalised, Hðb0Þ can then be
written as

Hðb0Þ ¼
E0

k2

1

b
02
�
X

i

Ai

Bi þ b
02

 !
: ðB:5Þ

In order to estimate E00; Hðb0Þ has to be minimised
by solving the equation

@Hðb0Þ
@b0

����
b0¼b0

min

¼ 0

orX
i

Ai

ðBi þ b
02
minÞ

2
¼

1

b
04
min

; ðB:6Þ

which results in

E00 C
E0

k2

1
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02
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�
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Bi þ b
02
min

 !

C
E0

k2

1

b
02
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�
X

i

4ðm=m0Þai

dððbi þ BÞ=4p2 þ b
02
minÞ

 !
:

ðB:7Þ

Similarly as for a Gaussian Hðb0Þ can be calculated
assuming that the 1S eigenfunction of the atom
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column can be parameterised by an exponential
function

c00ðr; b
0Þ ¼

1ffiffiffiffiffiffi
2p

p
b0

exp �
1

2

r
b0

� �� �
: ðB:8Þ

Hðb0Þ can then be written as

Hðb0Þ ¼
E0

k2

1

b20
� 2

X
i

Ai

b20
1 �

ffiffiffi
p

p ffiffiffiffiffi
Bi

p
b0 exp

Bi

b2

� � "

� 1 � Erf

ffiffiffiffiffi
Bi

p
b0

 ! !!#
: ðB:9Þ

After minimisation of this equation as function of
b0; E00 can be estimated. Our experience is that for
small values of the Debye–Waller factor, the

parameterisation of the 1S eigenfunction as an
exponential function provides better estimates of
E00 than a Gaussian parameterisation. Although,
in practice it is much more simple to minimise
Eq. (B.5) than Eq. (B.9), the latter is in some
particular situations unstable.

The variational principle provides thus a very
effective and quite accurate method to calculate
the eigenenergy of an atom column. In Fig. 11
both the eigenenergies, calculated with the pre-
sented method (using a Gaussian parameterisa-
tion) and by means of expansion in a basis set for
constant d and B; for various atom types Z are
plotted. In Table 1 some hard numbers of the
eigenenergy of particular well-known isolated
atom columns are given, calculated by expansion
of the eigenfunctions on the basis of two-dimen-
sional harmonic oscillator eigenfunctions and by
the presented fast method (Gaussian parameter-
isation), using the variational principle. As is clear
from Fig. 11 and Table 1 the match is quite good.
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